
Aio~V~7''-l

Teso Mehd fo nosriedOtmzto

Usn Scn Drvaie

Roer _ _ _ _ _ _ _ _ _ _ _ T-Tng ho

Tensor esit or Corain d piiatioule

UsPRTNg eOnd DeriUTEatiIEeC

OCTS43-8 Ju2 1989.

Tensor Methods for Unconstrained Optimization
Using Second Derivatives

Robert B. Schnabel and Ta-Tung Chow

CU-CS-439-89 July 1989

Department of Computer Science
Campus Box 430

University of Colorado,
Boulder, Colorado, 80309 USA

DIr?.r7!U1'.ON 3TAEMM A

vApproved for public re!easel

This research was supported by ARO grant DAAL 03-88-K-0086 and NSF grant

CCR-870243.

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author and do not necessarily reflect the views of the
National Science Foundation.

The findings in this report are not to be construed as an official Department of the
Army position, unless so designated by other authorized documents.

Acceslon For

NTIS CRA&I
DTIC TAB 0
U,)t3nlo'1ed 0

J,. j.<, I O'Iltr

Avjil;.b'ity Codes

Av,-i a'I dIor

DistI S. caI

.... ===• ,.=.= m.. mil iam n lllmmii|Hi I I I I I I

Abstract

We-introduce a new type of method for unconstrained optimization, which we call a tensor method.

It is related in its basic philosophy to the tensor methods for nonlinear equations of Schnabel and Frank,

but beyond that the methods have significant differences. The tensor method for unconstrained optimiza-

tion bases each iteration upon a fourth order model of the objective function. This model consists of the

quadratic portion of the Taylor series, plus low rank third and fourth order terms that cause the model to

interpolate already calculated function and gradient values from one or more previous iterates. We show

that the costs of forming, storing, and solving the tensor model are not significantly more than these costs

for a standard method based upon a quadratic Taylor series model. Test results are presented for sets of

problems where the Hessian at the minimizer is nonsingular, and where it is singular. On all the test sets,

the tensor method solves considerably more problems than a comparable standard method. On problems

solved by both methods, the tensor method requires about half as many iterations, and half as many func-

tion and derivative evaluations as th., standard method, on the average.

1. Introduction

This paper describes a new method, called a tensor method, for solving the unconstrained optimiza-

tion problem

givenf : R -- R , findx.cRI such that f (x.): .f (x) for all x E D (1.1)

where D is some open neighborhood containing x.. We assume that f (x) is at least twice continuously

differentiable, and that n is of moderate size, say n < 100. Our objective is to create a general purpose

method that is more reliable and efficient than state-of-the-art methods for solving such problems, partic-

ularly in cases where the evaluation of f (x) and its derivatives is expensive. We especially intend to

improve upon the efficiency and reliability of standard methods on problems where V2f (x.) is singular.

The distinguishing feature of our new method is that it bases each iteration upon a fourth order

model off (x), as opposed to the standard quadratic model. The third and fourth order terms of this

model have special, low-rank forms that make the costs of using the higher order model reasonable. In

particular, in comparison to standard methods, the formation and use of the fourth order tensor model

requires no additional function or derivative evaluations per iteration, only a small number of additional

arithmetic operations per iteration, and only a very small amount of additional storage.

The tensor method approach was introduced by Schnabel and Frank [1984, 1987], who describe

tensor methods for solving systems of nonlinear equations. Their methods base each iteration of an algo-

rithm for solving F (x) = 0, where F : R n -+Rn , upon the second order model

MT(Xc+d)=F(x,)+Jc d+11Tcdd . (1.2)

Here x, is the current iterate, Jf=RnxII is the Jacobian matrix F'(x,) or an approximation to it, and

TeRI"'A is a low rank "tensor". In Schnabel and Frank's computational experiments, the use of the

tensor methods led to significant improvements in efficiency and reliability over state-of-the-art methods

for nonlinear equations that are based upon standard, linear models. In the case when F'(xe) is available,

2

the average reductions measured in function and derivative evaluations ranged from 20% to 60%, on both

nonsingular and singular problems. Frank [19841 also proved that this derivative tensor method has a

three-step, order 1.16 local convergence rate on problems where rank(F'(x.)) = n-I, whereas standard

methods are linearly convergent under these conditions.

The tensor method described in this paper is related to the methods of Schnabel and Frank in its

basic philosophy, but it is not a straightforward generalization of their methods. In particular, it is not the

application of the model (1.2) to the problem Vf (x) = 0. This would correspond to using a third order

model of f (x); as we have already stated, we use a fourth order model instead. To help motivate the

basic differences, we first summarize some features of standard methods for unconstrained optimization.

Standard methods for solving small to moderate size unconstrained optimization problems base

each iteration upon a quadratic model of f (x) around the current iterate xc,

m(x,+d)=f(xc)+gTd+l2dTHcd , (1.3)

where d r Rn, g, er' is Vf (xe) or a finite difference approximation to it, and HeR r R Such methods

can be divided into two classes, those where H, is V2f (xe) or a finite difference approximation to it, and

those where H, is a secant approximation to the Hessian formed solely from current and previous gra-

dient values. In this paper we will consider standard and tensor methods of the first type, where both

Vf (xe) and V2f (xe) are available analytically or by finite differences at each iteration. A subsequent

paper will discuss tensor methods for unconstrained optimization that are based solely on function and

gradient values.

The fundamental method for unconstrained optimization, Newton's method, is defined when

V2f(x,) is nonsingular. It consists of using H, = V2f(x,) in (1.3) and setting the next iterate x+ to the

critical point of (1 3),

xT = x - V2f tC)-I Vf (xC) i (1.4)

The basic properties of Newton's method are well known. If V~f (x.) is nonsingular at a local minimizer

3

x., and the initial iterate is sufficiently close to x., then the sequence of iterative generated by (1.4) con-

verges quadratically to x.. If the initial iterate is not sufficiently close to x. , then the iterates produced by

Newton's method may not converge to x., but they may be made to converge through the use of line

search or trust region strategies (see e.g. Fletcher [1980], Gill, Murray, and Wright [1981], Dennis and

Schnabel [1983]). The main costs of unconstrained optimization methods based upon Newton's method

are : one evaluation of V2f(x), and one or more evaluations of Vf(x) and f (x), at each iteration: the

solution of a symmetric n xn system -f linear equations at each iteration, costing a small multiple of n3

arithmetic operations; and the storage of a symmetric n xn matrix.

One shortcoming of standard unconstrained minimization methods is that they do not converge

quickly if the Hessian at the minimizer, V2f (x.), is singular. Griewank and Osborne [1983] have shown

that in this case, the iterates produced by (1.4) generally are at best linearly convergent, even if V2f (x,)

is non-singular at all the iterates. Furthermore, the third derivatives do not supply information in the

direction(s) where the second derivative matrix is lacking, since the necessary conditions for minimiza-

tion show that at any minimizer x. where V2f (x.) is singular with null vector v, V3f (x.)vvd must also

be 0 for all d R . Thus, adding an approximation to V 3f (x,) alone will not lead to better than linear

convergence for such problems. An approximation to the fourth derivative V4f (x,) as well, or at least

the quantity V4f (x,)vvvv, is necessary to obtain better than linear convergence.

This need for fourth order information in order to obtain fast convergence on singular problems is

one reason why we will use a fourth order model, rather than a third order model, in our tensor methods

for optimization. Other reasons are that a third order model is unbounded below, even though it may

have a local minimizer, and that the information that is readily available in an optimization algorithm,

namely values of f (x) and Vf (x) at previous iterates, naturally supports the use of a fourth order tensor

model. Note that these conditions are quite different from the situation for systems of nonlinear equa-

tions, where an approximation to F "(x.) (analogous to V3f (x.)) is sufficient to produce faster than linear

convergence on problems where the Jacobian at the solution is singular, and where only one piece of

interpolation information (F (x), analogous to Vf (x)) is readily available from each previous iterate.

4

For these reasons, we have based the tensor methuds for unconstrained minimization discussed in

this paper upon the fourth order tensor model

mT~xC~d=f~xC)Vf (X,)Td + I d T V2f (x,)d + T ddd+-~Vdd 15

where by Vf (x,) ana V2f (xc) we mean either these analytic derivatives, or finite difference approxima-

tions to them, and where TER n and VER n " are symmetric. (The symmetry of T, and V, is

another significant difference between tensor models for unconstrained optimization and for nonlinear

equations, where T, is not symmetric.) The three-dimensional object T, and the four-dimensional object

V, are referred to as tensors, hence we call (1.5) a tensor model, and methods based on (1.5) tensor

methods. Before proceeding, we define the notation concerning these tensors that is used above and in

the remainder of this paper.

Definition 1.1 Let T e R 1 'A I. Then for u,v,w,E R n. Tuvw E R, Tvw E R 1, with

?t I n

Tuvw = , T[i'jk]u[i]v[jlw[k],

Tvw (i] Ej= _ T[i~ykI]U vjw[k] , i=I, ...,

Definition 1.2 Let V r R ' .Then for r,u,v c,w- R , Vruvw r R, Vuvw E R with

Vruvw = V[i J,k,I]r[i uU[.jv[k w[I],

VV [i I=' AV[i,jk,lIu U Iv (k Iw [II , i=l,...n.

The obvious choices of T, and V, in (1.5) are V3f (xc) and V4f(xc); these would make (1.5) the

first five terms of the Taylor series expansion of f around xc. We will not consider using the actual

higher order derivatives in the tensor model, however, because the cost of doing so would be prohibitive.

In particular, 0 (n 4) partial derivatives would have to be evaluated or approximated at each iteration; stor-

ing these derivatives would take 0 (n 4) locations; and finding a minimizer or the model would require the

solution of a difficult minimization problem in n variables at each iteration. E,.ch of these reasons alone

is sufficient to reject this alternative for a general purpose method, although we note that for some func-

tions f(x) with special forms, using analytic higher order information can be viable (see Jackson and

McCormick [19861).

Instead, our new method will choose T, and V, in (1.5) to be simple, low-rank symmetric approxi-

mations to V3f (x,) and V 4f (x,) that are formed from previously calculated function and gradient values.

The remainder of this paper will show how we efficiently form and solve such a tensor model, how we

incorporate it into a complete unconstrained optimization algorithm, and what the computational perfor-

mance of this algorithm is. Section 2 describes how we form the tensor model, and shows that this

requires only a small multiple of n2 additional arithmetic operations per iteration, and a sma!l multiple of

n additional storage locations. In Section 3 we show how we solve this model using only O(n 2) more

operations per iteration than the 0 (n 3) operations that are needed by the standard quadratic model. A full

tensor algorithm for unconstrained optimization is presented in section 4. In section 5, we present test

results of our tensor method on problems from Monr, Garbow and Hillstorm [1981), and on modifications

of these problems constructed so that V2f (x.) is singular. We compare these results to those obtained

from a state-of-the-art algorithm that uses the standard quadratic model (1.3) but is identical to the tensor

algorithm in virtually all other respects. We briefly summarize our research and comment on possible

extensions of this work in Section 6.

We will denote members of a sequence of n-vectors x by fxk }, where each xk ER , and to avoid

ambiguity with this notation, we will continue to denote components of a vector v E R R by v [i]E R. We

will also abbreviate terms of the form dd, ddd, and dddd in our tensor models by d 2, d 3, and d4 respec-

tively.

6

2. Forming the Tensor Model

Now we discuss how we select the tensor terms T.ER, 'R"(and VcR 11. . . in the model

mr(x,_+d)=f (x)+Vf (x)Td+ dTV2f (x,)d+ ITcd3 +,Vd4. (.

We have already stated that T, and V, will not contain actual third and fourth derivative iniormation.

Instead, we will use the third and the fourth order terms in (2.1) to cause the model to interpolate function

and gradient information that has been computed at some previous iterations of the optimization algo-

rithm. In particular, we will select p not necessarily consecutive past iterates x-•, x-p, and ask that

the model (2.1) interpolate f (x) and Vf(x) at these points, i.e.

f(Xk)=f (xXS-cf (X-ask+ sI ' Is TsS3+ 1 s 4, k=l, p (2.2a)

Vf (x .)-Vf (x,)+ Vf (x,)sk+T:sSk+-Vcsk3, k =. P (2.b

where

sk=x-t-x, k=l, p. (2.2c)

First we briefly summarize how the past points x-1,"•. ,x-p are selected. Then we discuss how we select

T, and V, so that (2.2) is satisfied.

The set of past points used in the interpolation conditions (2.2) is selected by the procedure given in

Schnabel and Frank [1984]. We always select the most recent previous iterate, and then select each

preceding past iterate if the step from it to x, makes an angle of at least 0 degrees with the subpace

spanned by the steps to the already selected, more recent iterates. Values of 0 between 20 and 45 degrees

have proven to be best in practice; therefore the selected directions {sk } are strongly linearly independent.

This procedure is easily implemented using a modified Gram-Schmidt algorithm. We also set an upper

bound

p <_n z:.(2.3)

7

on the number -- 1ast points. This bound was motivated by computational experience that shoved that

using more than about n 113 interpolation conditions rarely helped much. and also by the desire to keep the

:orage and arithmetic costs of our tensor method low. In fact, however, our computational results will

show that the strong linear independence criterion discussed above usually limits p far more severely

than (2.3).

Now we discuss how we choose T, and V, to satisfy (2.2). First we show that the interpolation

conditions (2.2) uniquely determine Tsk3 and Vs 4 for each k 1,-• ,p. Multiplying (2.2b) by s, gives

Vf (xk)Tsk = Vf (Xc)TSk+S1V2f (c,)S + k 4Sk C-T k +-6 ,, k4,k p(2.4

Let the unknown quantities ct, (k RP be defined by

o4k J= Tsk3 , (2.5a

S,[k - Vs 4 . (25b

for k=1, 4. Then from (2.2a) and (2.4) we have the following systems of two linear equations in two

unknowns for each of the p pairs QtkI and P3[k I•

o:(k]+-l k]=qj[k] (2.6a)
(2.6b)

where qj, q2ERP are defined by

q I[k =Vf (x_) sk -Vf (XC)Sk -SZV'f (x)Sk.

2[k]= f(x-k)-f (xc)-Vf (Xc,)'rsk St sV2f (c)k

for =1, ,p The system (2.6) is nonsingular. so each ct[k I and 3[k I is uniquely determined.

Thus for c-ach k, our interpolation conditions uniquely determine Vsk4 and Tsk3, and, from (2.2b).

leave us with np linear equations in 0 (n4) unknowns to determine the p terms Tsk2+- Vsk3. These are theI3

8

only remaining interpolation conditions, meaning that the choices of T and V are vastly underdetermined.

We have chosen to select T and V from among the infinite number of possibilities by first choosing

the smallest symmetric V, in the Frobenius norm, for which

Vs 4-= P(k , k=l, p

where P3(k I is calculated by (2.6). The rationale behind this choice is to use the smallest fourth order term

consistent with the interpolation conditions, thereby modeling as much of the function and gradient infor-

mation as possible with a third order model. This choice also will give us the necessary fourth order

information in the singular case. We then substitute this value of V into (2.2b), obtaining

TCsk2" ak, k=l, ,p (2.7a)

where

= 2(Vf (x-k)-Vf (Xc)--V2f (xc,)-Vs'3), k=], •p. (2.7b

This is a set of np<n 1 3 linear equations in n3 unknowns T,[i,jk], l~i,j,k<_n. Finally we choose the

smallest symmetric To, in the Frobenius norm, which satisfies the equations (2.7). The use of the

minimum norm solution here is consistent with the tensor method for nonlinear equations, and will again

be a key to the efficiency of our method because it will cause T, and V, to have low rank.

The solutions to the minimum norm problems that determine V, and T, are given by Theorems 2.2

and 2.3. We note that deriving the minimum norm T, is much more difficult than in the tensor method

for nonlinear equations, because of the symmetry requirement. First we define three and four dimensional

rank one tensors, which will feature prominently in these theorems and the remainder of this paper. Also

recall that the Frobenius norm of any matrix or tensor A, denoted I IA I IF, is the square root of the sum

of the squares of all the elements of A.

Definition 2.1 Let u,v,wxER". The tensor TERn"× " for which T[ij,k]=u[i]*v[j]*w[k],

l_<i,j,k!<n is called a third order rank one tensor and will be denoted T=uvw. The tensor V'E R"",

9

for which V [iJ,k, I=u [i]*v U]*w [k]'x [1, iJ,k,l <n is called a fourth order rank one tensor and will

be denoted V=uvwx.

Theorem 2.2 Let pn, let skeR",k=l, ... ,p with (ski linearly independent, and let 13eRP. Define

M E RPP by M [i ,j]=(ssj)4, l<i ,jp, and define ye RP by --M-1p3 . Then the solution to

minimize I IVI F subject to V, s =[k], k=l, -p and V, symmetric (2.8)
V, .R. a a a

is

VC=AYk(s' sksk sk) . (2.9)

Proof. Let VrRA be defined by VT = (VC[1,II,1],Vc[1,1,1,2], , V[1,1,1,n],V,[1,1,2,1],

,Vc[1,1,2,n],", Vl[n,n,n,n]). Also let SERP,",', be defined so that row k of s is equal to

((sk[l])4,(sk[l]) 3 (st[2]),(s[l])3(sk[3]) , . , (sk[jl])3(sk[n]), --- ,(s[n])4), i.e. the same order of sub-

scripts as in V. Then (2.8) is equivalent to

minimize I I V 112 subject to. V =3and V, symmetricV

where V, is the original form of V. Since (sk} are linearly independent, § has full row rank. The solu-

tion to

minimize I 1, llsubject tosV=13

is Q=jT(, ,. By straightforward algebra, T=M. Thus V.&-Ty, which by reversing the transforma-

tion frkw V back to V, is equivalent to (2.9). Since Vc is symmetric, it is the solution to (2.8). 0

Theorem 2.3 Let pan, let skeR, k=l, .p with {sk) linearly independent, and let akER",

k=l, •p. The solution to

10

minimize I IT, I IF subject to Tcsisi=ai. i=1,... ,p and T, symmetric (2.10)
T.E, R,

is

T: =A bk sk sk +sk bk sk +sk sk bk (2.11)

where bkER", k=1, ,p, and {bk} is the unique set of vectors for which (2.11) satisfies Tcsisi=ai,

i=l,...'p.

Proo'. First we show that the constraint set in (2.10) is feasible. Let tiER", i=1, • • • P, obey

= 0l, ij

for j=1, p. Such vectors ti are obtainable via a QR factorization of the matrix whose columns are the

si. Then

T= , titi ai +ti ai i +ai ti ti-2(aTsi)(t ti ti)

is a feasible solution to (2.10).

Dennis and Schnabel [1979] show that if the constraints in (2.10) are satisfiable, then the set of ten-

sors Ti R" " generated by the procedure To-), and for all j=0,1.2, • • -, T2j~. is the solution of

minimize I I T2J+I-T2j I IF subject to T2j+lisis=ai, i=l, 4, (2.12)

and T2j+2 is the solution of

minimize I I T2j+2-T 2j+l I IF subject to T2j+2 is symmetric,

has a limit which is the unique solution to (2.10).

Next we show that this limit has the form (2.11) for some set of vectors (bk }, by showing that each

T2j has this form. This is trivially true for To. Assume it is true for some fixed J, i.e.

11

T2j Uk Sk Sk +Sk Uk Sk +Sk Sk Uk (2.13)

for some set of vectors [Uk 1. Then from Schnabel and Frank [1984], the solution to k2.12) is

T 21 +1 =T2j +A= v Sk Sk

for some set of vectors { vk }. Thus

T2 +2=T2 ++ Vk Sk Sk+Sk Vk A +Sk Sk Vk

S(Uk +--)sk sk +sk (uk +- -)sk +Sksk (Uk +3)

which again has the form (2.13). Thus by induction the solution T, to (2.10) must have the form (2.11)

for some set of vectors {bk..

Finally we show that the set of vectors {bt) for which T, given by (2.11) satisfies

Tcsasi=ai, i=1, ,p (2.14)

is unique. This will mean that the equations (2.11) and (2.14) uniquely determine the solution to (2.10).

Substituting (2.11) into (2.14) gives a system of np linear equations in np unknowns, where the matrix is

a function of the {sk), the unknowns are the elements of the fbk), and the right hand side consists of the

elements of the (ak). Since we showed above that (2.10) is feasible for any {ak), the above derivation

and the theory of Dennis and Schnabel [1979] imply that for any set [sk i, this linear system has at least

one solution for any right hand side. Thus the linear system must be nonsingular and have a unique solu-

tion. This means that the set of vectors (bk) is uniquely determined, and completes the proof. El

Theorems 2.2 and 2.3 show that T, and V, determined by the minimum norm problems (2.10) and

(2.8) have rank 2p and p, respectively. This is the key to making the tensor model efficient to store and

solve. However, while the proof of Theorem 2.3 shows constructively that there is a unique T, of the

form (2.11) that satisfies (2.10), it does not give an efficient algorithm for finding it, since the proof

involves solving a system of np linear equations in np unknowns. We now present an efficient method

12

for finding T,.

Substituting (2.11) into (2.14) gives the equations

ai bk Sk sk +Sk bk Sk +Sk Sk bk)si Si

i=1, •p in the unknowns {bk}. We can write these equations in the matrix form

A =B N +2SM (2.15)

where AeR"P, with column k of A=ak, BER"P, with column k of B=bk, SER"P , with column k of

S=sk,andN,M eRP P with Nij=(sTsj)2 and Mij=(sTsj)(bTsj), 1<i,j.p. Note that B contains the unk-

nowns, that M is a linear function of these unknowns, and that A, N, and S are known. Pre-multiplying

both sides of (2.15) by ST gives

[STA] = [STB]N + 2[STS]MI. (2.16)

Defining xj=bjsj, li ,j<p, we can rewrite (2.16) in the form ofp 2 linear equations in the p 2 unknowns

xii

s a Nx i w i1 X i

X12 + w X12 (2.17)

wpI ~wapp

where each wi in the second matrix of (2.17) is a p -vector given by wj=[(srs O(sTsj), (sTsz)(sIsj),

, (s7sP)(srsj)IT. The only unknowns in (2.17) are the x0j, so we can solve (2.17) for xi1 , and then com-

pute M by

M = (s2.5))(bwej (sn)xB

Finally, from (2.15), we can compute B by

13

B =(A -2S M)N-1 (2.18)

Note that N is symmetric and positive definite since the (sk } are linearly independent.

We conclude this section by summarizing the costs to form and store the tensor model. The dom-

inant costs of the process for calculating T, that is summarized in equations (2.17) and (2.18) are np 2

each multiplications and additions for calculating STA, the same cost for calculating S*M, the same cost

again for the backsolves in ,2.18), roughly np 2/2 each multiplications and addition. i, r calculating srs

for l1i5j<_p, and p 613 each multiplications and additions for solving the system (2.17), for a total of

(712)np2 + p 6/3 each multiplications and additions. Since p n I/3, these are all O(n 2) or less. The addi-

tional costs of forming V, are negligible, at most 0 (p 3). In addition, the cost of forming the interpolation

equations (2.2) includes the multiplication V2f(x,)sk for k=l, ,p which requires n'p each multipli-

cations and additions. This is generally the largest cost of forming the tensor model. The Gram-Schmidt

process for selecting the {Sk I requires about n513 arithmetic operations if n 113 vectors are considered. In

summary, only a small multiple of n2 additional arithmetic operations are required to form the model.

We will see in section 5 that usually p=l, so that the total additional cost per iteration is usually n 2 + n5/3

+ 0 (n) each additions and multiplications per iteration.

The storage required for forming ane storing the tensor model is also small. The tensor terms T,

and V, themselves require only the storage of the vectors bk and sk, which takes 2np <_ 2n ' 3 storage

locations. In addition, the model formation process requires at most 2n 4/3 storage locations for storing

n 1/3 each past iterates and their gradients, np -n4 storage locations for intermediate quantities in

(2.18), and p 4 S n4/'3 storage locations for the factorization in solving (2.17). Thus the total additional

storage is at most 6n 45.

14

3. Solving the Tensor Model

In Section 2 we showed how to find a rank 2p tensor T, of the form (2.11), and a rankp tensor V,

of the form (2.9), for which the tensor model (2.1) interpolates the function and gradient values at p

(5n 1/3) past iterates. Substituting these values of T, and V, into (2.1), the tensor model has the form

MT (X"+d) =f (X)+Vf (X)Td + Id TV2f (x)d + (bld) (sd)2 + I A yk (Sd4. (3. 1)

In this section we show how to efficiently find a minimizer of this model. Although equation (3.1) is a

fourth order polynomial in n variables, we will show how to reduce its minimization to the minimization

of a fourth order polynomial in p variables plus a quadratic in n-p variables. For conciseness we use the

notation g =Vf (x,) and H=V2f (x,) for the remainder of this section.

Let S eRn P, where column k of S is sk, and the (skI are linearly independent. Also let

ZeRx(f - ') and WeRmv have full column rank and satisfy ZTS=o and WTS=I respectively. (Z and

W can be calculated through the QR factorization of S; the efficient implementation of the operations

involving Z and W is discussed later in this section.) Then we can write d in (3.1) in the form

d = Wu +Zt (3.2)

where u eRP, tcR -P. Substituting (3.2) into (3.1) gives

mT(xC+Wu+Zt) =f (x) + grWu + gTZt + 4uTWTrHWU (3.3)

+ UTWTHZt + 1 tTZTHf~t + ,2 (bjWu bZt) + ly,

Equation (3.3) is a quadratic with respect to t. Therefore, for the tensor model to have a minimizer,

ZTHZ must be positive definite and the derivative of the model with respect to t must be 0, i.e.

ZTg+ZTHZt+ZTWTHu+ ZTbj ui2 --0 (3.4)

which yields

t=_(ZTHZ)-,ZT(g +HWu +4- bi4 £). (3.5)

Thus, if ZTHZ is positive definite, substituting (3.5) into (3.3) reduces the problem of minimizing the

tensor model to finding a minimizer of

rA()f+TU TTW+'U2bW +I y , (3.6)

1 +4. b U,2)TZ (ZTHZrI1ZT (g+HWU+ +-bi i 2)(+HWu +-I

which is a fourth degree polynomial in p variables. If (3.6) has a minimizer u., then the minimizer of the

original tensor model (3.1) is given by d. = Wu.+Zt., where t. is determined by setting u = u. in (3.5).

Note that this process is well defined even if H is singular, as long as ZTHZ is nonsingular and positive

definite. This is possible if rank(H) t n-p.

There are several possible difficulties with this process. First, (3.6) may have multiple minimizers.

Ifp=l, we can find the minimizers analytically, and if there are two, we choose the value of u. that is in

the same valley of the function lT (u) as u=O. This choice can be shown to guarantee that there is a

(nonlinear) descent path from x, to xe+d. for the model mT(X,+d). If p>1 we minimize (3.6) with a

standard unconstrained minimization code (starting from u=0) and use the minimizer it returns. We have

found that these procedures generally produce a desirable minimizer.

Secondly, the tensor model may not have a minimizer, either because ZTHZ is not positive

definite, or because (3.6) has no minimizer when ZTHZ is positive definite. Finally, even if (3.6) has a

minimizer d., x,+d. may not be an acceptable next iterate. These difficulties are addressed by using a

global strategy.

We have tried both line search and trust region global strategies in conjunction with our tensor

method. The line search strategy we used is simple : if (3.6) has a minimizer d. which is in a descent

direction, but x, +d. is not an acceptable next iterate, we set x, = x, +Md. for some XE (0,] using a stan-

dard line search. If (3.6) has no minimizer, or d. is not in a descent direction, we find the next iterate by

16

using a line search algorithm based on the standard quadratic model (1.3). The tensor method based on

this strategy has performed quite well (see Section 5), but we find that about 40% of the iterations cannot

use the tensor model. In order to make fuller use of the tensor model, we have also tried a trust region

strategy, which is the method that we concentrate on in this paper.

The trust region method approximately solves the problem

minimize mT(x,+d) subjectto IId 112 < 5

deR*

where 8e R is the trust radius that is adjusted at each iteration. This is a standard type of approach for

unconstrained optimization, see for example Fletcher [19801, Dennis and Schnabel [19831. Efficient

methods exist for solving the trust region problem with quadratic models (see e.g. Mord and Sorensen

[1983], but it is quite difficult to extend them to the tensor model. For this reason, in order to test the

trust region tensor method approach initially, we used a penalty method to solve (3.7). This means that

we solve (3.7) by solving a sequence of unconstrained optimization problems of the form

minimize MT (x, + d) + a (dTd.--82)2 (3.8)
deR"

for increasing positive values of the scalar a. (The details of selecting a are given in Chow [1989].) As in

most trust region algorithms, we only solve (3.7) approximately; in our implementation we stop when a

solution d. (a) to (3.7) satisfies I I d. (a) I I E [0.958, 1.0581. This means that a does not grow unbound-

edly, and in practice a small number of problems of the form (3.8) are solved per iteration. The penalty

approach is only intended for initial test purposes, because it increases the cost of each iteration consider-

ably due to the cost of solving (3.8), although it does not increase the cost in function and derivative

evaluations. We will see that our best results so far have been obtained when p is constrained to be 1 at

each iteration; an efficient but complicated method for solving (3.7) in this case is given in Chow [19891.

Finally, we discuss the costs of solving the tensor model. The main additional calculations in

finding a minimizer of the tensor model, in comparison to minimizing a standard quadratic model, are the

calculations involving the matrices Z and W. These are performed by calculating the decomposition S =

17

Q.R, where QER"'" is an orthogonal matrix that is the product of p Householder transformations, and

ReRn v consists of an upper triangular matrix R, in its first p rows, and is 0 otherwise. (Q is not actu-

ally formed, rather the p n -vectors that determine the p Householder transformations are stored, see e.g.

Stewart [19701.) Also letIf R"V consist of (RI)-' in its first p rows and 0 otherwise. Then W = Q.R ,

so for any vER" we can calculate WTv in 2np each multiplications and additions by applying the p

Householder transformations for QT followed by O(p 2) operations to apply (Rj)'. Similarly Z = Q I/

where f is 0 in its first p rows and the identity matrix in its bottom n-p rows. Thus for any v ER" we

can calculate ZTv in 2np each multiplications and additions by applying QT and then i. Using these

techniques, it is straightforward to verify that all the calculations in the tensor method that involve Z and

W, as well as the QR decomposition of S, can be performed in 4n"p + 0(np2) each multiplications and

additions per iteration; the leading term comes from calculating HQ and then Q THQ.

The other costs of minimizing the tensor model are (n-p)3/6 each multiplications and additions for

the factorization of ZTHZ, and the cost of minimizing the fourth order polynomial in p variables (3.6),

which is negligible in comparison to the 0 (n 3) Cost, especially when p = 1. Thus the total cost of minim-

izing the tensor model is only a small multiple of n'p operations more than the n 3/6 cost of finding a

minimizer of a standard quadratic model. Since p_<n "3 and we will see that usually p = 1. this is a very

small additional cost.

At many iterations, the tensor model has a minimizer which is accepted as the next iterate, so these

are the only costs of solving the tensor model. If a global strategy is needed, then the line search

described above can be implemented with about the same cost as for a standard quadratic model, since

given the factorization of ZTHZ we can also factor H using only 0 (n'p) additional operations. In the

case p=1, the trust region strategy can also be implemented as efficiently as in the quadratic case, i.e.

requiring the minimization of the tensor model at each inner iteration, by using the techniques in Chow

[19891. The penalt, approach is more expensive but is only intended for test purposes.

18

4. The Complete Tensor Method Algorithm

An outline of the complete tensor method algorithm that we used in our computational tests is

given in Algorithm 4.1. The remainder of this section comments on several aspects of this algorithm that

have not yet been discussed.

Algorithm 4.1 -- An iteration of the tensor method. Given x , f (x,), &•

1. Calculate Vf (x,) and decide whether to stop. If not:

2. Calculate V2f (x,).

3. Select p pst points to use in the *.cnsor model from among the n 1/3 most recent past points.

4. Calculate the terms T, and V, in the tensor model, so that the tensor model interpolates f (x) and

Vf (x) at all the points selected in step 3.

5. Find a potential acceptable next iterate x,+dT and a potential new trust radius &r using the tensor

model and a trust region strategy.

6. Find a potential acceptable next iterate xC+dN and a potential new trust radius 8 N using the qua-

dratic model and a trust region strategy.

7. If f (x, +dT) <= f (xc +dN)

then setx+= x, +dT and + =&

else set x += x +dN and 8 + = 8N.

8. Setx,=x+,f (x,)=f (x+), 5, = 8+, go to step 1.

The most important feature of Algorithm 4.1 that has not been previously discussed is that at each

iteration, we calculate a potential new iterate based on the quadratic model, as well as a potential new

iterate based on the tensor model. This means we perform a full global strategy using each model, result-

ing in two points x, +dT and x +dNv which both give sufficient decrease in f (x) to be acceptable as the

next iterate. Then we choose the one with the lower function value as the next iterate. Even though this

strategy increases the cost of each iteration by at least one function evaluation (since it is necessary to

evaluate f(x) at both xc+dT and xc+dN, and maybe at some unsuccessful trial points, in the global

19

strategies), we have found that this approach substantially improves the efficiency of our tensor method as

measured in function and derivative evaluations, as well as in iterations. We have not yet found a way to

achieve the same efficiency without requiring the use of both models at each iteration.

Finally we discuss some details of the steps of Algorithm 4.1. In steps I and 2, the gradient and

Hessian are approximated by finite differences using Algorithms A5.6.3 and A5.6.2 in Dennis and Schna-

bel [1983], respectively. The algorithm stops if I I Vf (x,) 1 12 -< IO0- or I I 112 -< 101°. Step 3 was dis-

cussed in Section 2; 45 degrees is used for the angle 0 mentioned there. The procedures for calculating

T, and V, in step 4 also were discussed in Section 2.

In step 5, we first determine whether the tensor model has an acceptable minimizer within the trust

region, and if so, we select this point as the solution to step 5. Otherwise we solve the trust region prob-

lem (3.7) by a penalty method, as discussed in Section 3, resulting in a candidate step d. Then we decide

whether to accept x, +d as the solution to step 5, update the trust radius, and possibly repeat this process

until an acceptable point xc+dT is found. In step 6, we follow the exact same procedure except that we

only use the first three terms of the model. The procedure for determining whether the candidate step is

acceptable in these trust region algorithms, and for updating the trust region, is identical to Algorithm

A6.4.5 in Dennis and Schnabel [1983], except that : 1) every occurrence of initslope is changed to

Afpred, where Afpred is the difference of the values of the model being used (tensor or quadratic) at the

candidate point and at x,; 2) steps (9c. 1-2) of Algorithm A6.4.5 are replaced by setting Afpred to this

same value.

20

5. Test Results

We have tested the tensor algorithm described in Section 4 on a variety of nonsingular and singular

problems. We compared it to an algorithm that is identical except that the third and fourth order terms T,

and V, are always zero. That is, the comparison algorithm is a finite difference Newton's method, whose

global strategy is a trust region problem solved by a penalty method. In this section we summarize our

test results. The details of our computational results are provided in the appendix. All our computations

were performed on a MIPS computer, using double precision arithmetic.

First we tested our algorithms on the set of unconstrained optimization problems in Mord, Garbow

and Hi~lstrom [1981]. All these problems except the Powell singular problem have V2f (x.) nonsingular.

The dimensions of the problems range from 2 to 30.

Then we created singular test problems by modifying the nonsingular test problems of Mord, Gar-

bow and Hillstrom [19811. All of the unconstrained optimization test problems in that paper are obtained

by taking a system of nonlinear equations

F(x)T = (f I(x), ,f.(x)) (5.1)

wherem 2n and eachf, :R -R, and setting

rni

ffx) = F(x)TF(x) = f, 2(x). (5.2)

In most cases, F(x) = 0 at the minimizer x., and F'(x.) is nonsingular. In these cases, Schnabel and

Frank [19841 showed how to create singular systems of nonlinear equations from (5.1), by forming

f(x) = F(x)-F(x.)A(ATA)-IAr(x-x.), (5.3)

where AeRn- has full column rank with 1.k .n. Thus F1(x.)=O and F'(x-) has rank n-k. To create a

singular unconstrained optimization problem, we simply define the function

f(x) = Af(X)Tf(X) (5.4)

From (5.4) and F(x.)=O, we have Vf(x.) = F'(x.)T,(x.) = 0. From

21

F'(x-) = F'(x.)[I-A(ATA)-AT] (55)

and

we know that V2f(x.) has rank n -k.

By using (5.3-4), we created two sets of singular problems, with V2f(x.) having rank n-I and

n-2, by using

AERnXI , AT=(I,1.....1)

and

AT=LP -1 1 -1 1 (-IY)

respectively. We tested our methods on the singular versions of all the nonsingular problems except the

Gaussian function and the Gulf research and development function, which we excluded because their

nonsingular versions never converged to a minimizer using either standard or tensor methods.

Our computational results for the sets of test problems whose Hessians at the minimizers have

ranks n, n-1, and n-2 are summarized in Tables 5.1-5.3, and given in detail in Appendices AI-A3,

respectively. For each problem set, Tables 5.1-5.3 compare the performance of the standard method to

two versions of the tensor method: the one described in Sections 2-4 where the number of past points

interpolated, p, is selected at each iteration to be between I and n 1/3, and a second version where p is res-

tricted to be , at all iterations. We tested the second version because we observed that the first version

generally chose p = I anyhow, and because the tensor method is considerably simpler to implement, and

is cheaper in terms of storage and cost per iteration, when p = 1.

Tables 5.1-5.3 summarize the comparative costs of the standard and tensor methods using ratios of

two measures: iterations, and function and derivative evaluations. The iteration ratio is the total number

of iterations required by the tensor method on all problems that were successfully solved by both

22

methods, divided by the total number of iterations required by the standard method on these problems.

The second ratio is based upon the total number of function evaluations required to solve each problems,

including those for finite difference gradients and Hessians (i.e. we count n function evaluations per gra-

dient evaluation and (n2+3n)/2 function evaluations per Hessian evaluation). The ratio reported is the

total of these numbers for the tensor method over all problems that were successfully solved by both

methods, divided by the total of these numbers for the standard method over the same problems. Tables

5.1-5.3 also contain, for that test set, the number of problems where the performance of the tensor method

was better, worse, or the same as the standard method. Here better is defined as at least 5% better in the

function evaluation measure, worse is defined as at least 5% worse in the function evaluation measure,

and the remaining problems are considered the same.

The statistics in Tables 5.1-5.3 only pertain to test problems that were solved successfully by both

the standard method and the tensor method. Table 5.4 shows, for each test set, how many problems were

solved successfully by the tensor method but not by the standard method, and vice versa.

In summary, Tables 5.1-5.4 show that both the p >_1 and the p =1 versions of the tensor method have

a large advantage, in both reliability and efficiency, over the standard method on all three test sets. In

each of the six comparisons, a substantial portion of the test problems (between 16% and 22%) are solved

by the tensor method and not the standard method, while only two problems in the nonsingular sets and

none in the singular sets are solved by the standard method and not the tensor method, In addition, on the

problems solved by both methods (between 43 and 50 problems in each of the six cases), the average cost

of the tensor method, measured in iterations or function and derivative evaluations, is generally slightly

less than half of the cost of the standard method. Finally, the improvements by the tensor method ar,

quite consistent. Totaling all our tests, the tensor method is worse than the standard method in 8% of the

test cases (28 of 352), better in 87.5% (308 of 352), and the same in 4.5% (16 of 352).

The performances of the version of the tensor method which constrains p to be I and the version

that allows p to be between I and n 113 are rather similar overall, with the p=l version actually

23

Table 5.1 -- Summary of Test Results for Nonsingular Problems

method tensor/std.(itn) tensor/std.(fcn) tensor better std. better tie
p=l 0.496 0.580 36 5 3
p:l 0.468 0.488 34 5 4

Table 5.2 -- Summary of Test Results for Rank n-i Singular Problems

method tensor/std.(im) tensor/std.(fcn) tensor better std. better tie
p=l 0.465 0.400 42 3 2
p2!1 0.479 0.466 40 5 2

Table 5-3 -- Summary of Test Results for Rank n-2 Singular Problems

method tensor/std.(im) tensor/std.(fcn) tensor better std. better tie
p=l 0.449 0.390 j 45 1 3
p_>l 0.489 0.466 1 43 5 2

Table 5.4 -- Number of Problems Solved by Tensor/Standard Method Only

method nonsingular I singular(rank n-1) singular(rank n-2)
p=l 13/2 9/0 13/0
p>l 11/2 12/0 10/0

performing somewhat better overall on the singular test sets and the p i version performing somewhat

better on the nonsingular test set. One reason for their similarity is that even when we allow p > 1, we

have found that our criterion for selecting past iterates to interpolate generally results in p=l. Over all

our test problems, we found that the p>_.1 method selected p=l 85% of the time, p=2 15%, and p>2

0.35%. Thus it appears that the advantages of the tensor method may be achieved by using p=1, which

would mean that the extra cost of storing and forming the tensor model would be very low, and that the

method would be quite simple to implement. In particular, using p =1 has the advantage that the formulas

24

for T, and V, are readily available in closed form in terms of the function and derivative values being

interpolated, and that solving the tensor model reduces to minimizing a fourth order polynomial in one

variable which also can be done in closed form.

In our tests, the global portion of the tensor method (steps 5-7 of Algorithm 4.1) selected the step

from the quadratic model about 20% of the time on the average. While this is a rather small percentage,

the performance of the tensor method is improved significantly by allowing this possibility.

We do not claim to fully understand why the tensor method performs so much more efficiently and

reliably than a state of the art standard methcd in our tests. What is especially surprising is that the

improvements are attained by incorporating a small amount of extra information, usually just the function

in gradient from the previous iterate, into the model. Apparently, having a more accurate model in the

direction of the previous step is especially useful in practice.

The computational advantage of the tensor method is probably not due to an improved rate of con-

vergence, except when rank(V 2f (x.)) = n-1. In particular, when V2f (x.) is nonsingular and n > 1, it is

highly unlikely that the convergence rate of the tensor method is different than the quadratic rate of the

standard method. (It is easy to show that the tensor method is at least quadratically convergent in this

case because the influence of the tensor terms vanishes asymptotically.) In the case when V2f (x.) has

rank n-1, we conjecture that the convergence rate of the tensor method is again better than the linear con-

vergence of the standard method, as was shown by Frank [1984] for the tensor method for nonlinear equa-

tions. We have not yet attempted to prove this, except in the case n =1 where it is straightforward to show

that the tensor method converges with order 1.2 (Chow [1989]). We did measure the ratios of

the errors of successive iterates on our test problems with rank V2f(X.) = n-l. An example is given in

Table 5.5. We see that the standard method converges linearly with constant = 2/3, as predicted by the

theory, and that the tensor method appears to be converging faster than linearly. (An interesting feature

of this example is that iterations 2 and 5 of the tensor method increase the error in x, even though the

function value decreases. We noticed such behavior by the tensor method on several test problems,

25

although for most it did not occur.) When rank(V 2f (x,)) = n-2, the tensor method does not have enough

information to prove a faster than linear convergence rate, since it usually uses p = 1.

Table 5.5 -- Speed of Convergence on a Typical Problem with Rank V2f (x-) = n-i

(Singular version of variably dimensioned function, n = 10, started from x0 , using p =1)

Numbers in the second and the third columns are Ixkx. II lxk-i-xo IT

Iteration (k) Tensor Method Standard Method
1 0.825 0.825
2 61.73 0.825
3 0.028 0.825
4 0.104 0.668
5 7.860 0.776
6 0.033 0.647
7 0.665 0.666
8 0.665 0.665
9 0.600 0.666
10 0.635 0.666
11 0.664 0.666
12 0.654 0.667
13 0.436 0.667
14 0.511 0.667
15 0.120 0.666
16 0.058 0.666
17 0.666
18 0.666
19 0.666
20 0.665
21 0.665
22 0.664
23 0.664
24 1 0.667

26

Finally, we have also implemented a line search version of the tensor method and compared it to an

algorithm using the standard quadratic model and the same line search. We found that, on the average,

the performances of the line search and trust region versions of the quadratic model algorithms were very

similar, and that the line search version of the tensor method was almost 15% less efficient than the trust

region tensor method. (See Chow [1989] for details.) We observed that the global strategy is only able to

use a tensor method step about 60% of the time in the line search tensor method versus about 80% of the

time in the trust region version. This may be related to the difference in their performances. But the line

search tensor method still improves by a large amount over the standard method.

6. Summary and Future Research Directions

We have presented a tensor method for unconstrained optimization that bases each iteration upon a

fourth order model of the objective function. This model interpolates the function value, gradient, and

Hessian of the objective function at the current iterate, and forms its third and fourth order terms by inter-

polating values of the function and gradient at previous iterates. The costs of storing, forming, and using

the model are not significantly more than for a standard method that uses a quadratic Taylor series model.

The computational results of Section 5 show that the tensor method is substantially more reliable

and efficient than the corresponding standard method on both the nonsingular and singular problems that

we tested. This experience indicates that the tensor method may be preferable to methods available in

software libraries for solving small to medium sized unconstrained optimization problems, in cases when

analytic or finite difference Hessian matrices are available. Obviously, more computational experience is

necessary to determine this conclusively. To facilitate this process, we are developing a software package

that implements a tensor method for unconstrained optimization using analytic or finite difference second

derivatives, and will make it available shortly. Our software package restricts p, the number of past

iterates whose function and gradient values are interpolated at each iteration, to be one. The reasons for

this choice are that our computational results show that the tensor method with p=l is generally about as

27

effective as the method that allows p >I, and that the method is considerably simpler and cheaper to

implement in this case. Initially it will use a line search rather than a trust region, because the line search

tensor method is currently much easier to understand, and much faster on small, inexpensive problems,

than the trust region version, while still leading to large savings in iterations and function and derivative

evaluations on our test problems. A trust region version may be added to the package later.

Several interesting research topics remain concerning the tensor method described in this paper. As

indicated above, the development of a simple, efficient method for approximately solving the trust region

problem using the tensor method would be very useful. Chow [1989] has developed a fairly efficient, but

complex method for solving the trust region problem (3.7) when p=l; the question of how to solve this

problem efficiently when p >I remains open. It would also be nice to develop an effective global strategy

that does not require the determination of the step using both the tensor model and the quadratic model at

each iteration. Finally, as we mentioned in Section 5, the local convergence analysis in the case n >1

remains open.

The standard and tensor methods discussed in this paper both assume that the analytic or finite

difference Hessian is available at each iteration. Often in practical applications, however, the analytic

Hessian is not available, and it is expensive to calculate by finite differences, so secant (quasi-Newton)

methods are used instead. These methods are based on a quadratic model that is formed solely from func-

tion and gradient values at the iterates (see e.g. Dennis and Mord [1977], Fletcher [1980], Dennis and

Schnabel [19831). We are developing a secant tensor method for unconstrained optimization that bases

each iteration upon a fourth order model that is also determined solely from function and gradient values

at the iterates. This work is described in Chow [19891 and in a forthcoming paper.

28

7. References

T. Chow [19891, "Derivative and secant tensor methods for unconstrained optimization", Ph.D. Thesis,
Department of Computer Science, University of Colorado at Boulder.

J. E. Dennis Jr. and J. J. Mord [1977], "Quasi-Newton methods, motivation and theory", SIAM Review 19,
pp. 46-89.

J. E. Dennis Jr. and R. B. Schnabel [1983), Numerical Methods for Nonlinear Equations and Uncon-
strained Optimization, Prentice-Hall, Englewood Cliffs, New Jersey.

J. E. Dennis Jr. and R. B. Schnabel [1979), "Least change secant updates for quasi-Newton methods",
SIAM Review 21, pp. 443-459.

R. Fletcher [19801, Practical Method of Optimization, Vol 1, Unconstrained Optimization, John Wiley
and Sons, New York.

P. D. Frank [1984], '"rensor methods for solving systems of nonlinear equations", Ph.D. Thesis, Depart-
ment of Computer Science, University of Colorado at Boulder.

P. E. Gill, W. Murray, and M. H. Wright [1981], Practical Optimization, Academic Press, London.

A. 0. Griewank and M. R. Osborne [19831, "Analysis of Newton's method at irregular singularities",
SIAM Journal on Numerical Analysis 20, pp. 747-773.

R. H. F. Jackson and G. P. McCormick [1986], "The polyadic structure of factorable function tensors with
application to high-order minimization techniques", Journal of Optimization Theory and Applications 5 1,
pp. 63-94.

J. J. Mord B. S. Garbow, and K. E. Hillstrom [1981], "Testing unconstrained optimization software",
ACM Transactions on Mathematical Software 7, pp. 17-41.

J. J. Mord and D. C. Sorensen [19831, "Computing a trust region step", SlAM Journal on Scientific and
Statistical Computing 4, pp. 553-572.

R. B. Schnabel and P. Frank [1984], '"Tensor methods for nonlinear equations", SIAM Journal on Numeri-
cal Analysis 21, pp. 815-843.

R. B. Schnabel and P. Frank [1987], "Solving systems of nonlinear equations by tensor methods," The
State of the Art in Numerical Analysis, A. Iserles and M.J.D. Powell, eds., Clarendon Press, Oxford, pp.
245-271.

G. W. Stewart [19701, Introduction to Matrix Computations, Academic Press, New York.

29

Appendix A

Test Results for the Standard and Tensor Methods

The columns in Tables A. 1 - A.3 have the following meanings•

Function: name of the problem.

n : dimension of the problem.

x0: starting point (from Mord, Garbow and Hillstrom [1981]). 1, 10 and 100 stand for x0, 10xo and
100xo, respectively.

itns: number of iterations.

fcns: number of function evaluations (including the necessary function evaluations for finite difference
gradients and Hessians).

x. : two methods converge to the same minimizer if and only if they have the same letter in this column.

The abbreviations OF, OL and NC stand for overflow, over iteration limit, and convergence to a
noninimizer, respectively. The iteration limit was 120.

30

Table A.1 -- Test Results for the Standard and Tensor Methods
on Nonsingular Problems

Funcion n Tensor (p_2l)_ Tensor (p=l) Standard
iFs fcns x. itns fcns x. IS fcns

Rosenbrock 2 1 1.5 150 a 14 146 a 22 183 a
10 35 345 a 35 345 a 64 542 a

100 86 833 a 83 795 a OL -

10 1 21 1724 a 21 1683 a 21 1615 a
10 OF - - OF - - 73 5605 a

100 OF - - OL - - OL

30 1 21 11640 a 25 13240 a 22 11610 a
10 OF - - 83 44067 a 92 48484 a

100 OF - OL - - OL -

Wood 4 1 30 629 a 30 629 a 62 1230 a
10 32 674 a 34 723 a 70 1391 a
100 OL - - OF - - OL -

Helical 3 1 11 170 a 9 138 a 13 175 a
valley 10 14 213. a 14 215 a 16 216 a

100 13 194 a 13 194 a 15 203 a

Trigono- 2 1 4 40 a 4 40 a 4 37 a
metric 10 6 62 a 6 62 a 7 59 a

100 4 38 a 4 38 a 5 43 a

10 1 6 553 a 7 555 a 19 1467 a
10 9 708 a 9 708 a 50 3820 a
100 40 3106 a 43 3336 a 32 2446 a

Beale 2 1 7 71 a 7 71 a 7 62 a
10 12 120 a 8 78 a OL -

100 OL - - OF - - NC -

Brown and 4 1 13 272 a 13 271 a 18 347 a
Dennis 10 16 333 a 14 292 a 24 461 a

100 22 469 a 21 440 a 40 778 a

Brown badly 2 1 OL - - OF - - OL -
scaled 10 OL - OL - - OL -

100 OL - - OL - - OL -

Box three 3 1 12 183 a 13 200 a 21 290 a
dimensional 10 19 305 a 23 359 a 59 827 b

100 20 325 a 17 281 b OL -

31

Table A. I (continued)

Penalty1 4 1 10 211 a 9 190 b 33 644 c
10 10 209 a 11 229 a 39 757 a
100 14 293 a 13 272 a 43 829 a

10 1 15 1179 a 14 1101 a 35 2680 a
10 11 868 a 9 707 a 40 3059 a
100 23 1811 a 24 1889 a 52 3988 a

30 1 19 10058 a 20 10577 a 36 18973 a
10 22 11640 a 26 13761 a 44 23189 a
100 29 15337 a 31 16391 a 99 52174 a

Penalty 11 4 1 7 151 a 5 108 a 120 2285 b
10 13 274 a 20 416 b OL -
100 44 913 a 29 605 b OL -

Variably 4 1 7 153 a 7 153 a 10 195 a
dimensioned 10 7 150 a 7 148 a 11 214 a

100 13 272 a 13 271 a 18 348 a

10 1 10 794 a 11 863 a 16 1229 a
10 9 936 a 10 786 a 20 1534 a
100 18 1492 a 17 1338 a 32 2447 a

30 1 18 9540 a 10 5306 a 33 17391 a
10 17 10056 a 17 9002 a 40 21073 a
100 56 30641 a OL - - 112 58956 a

Biggs 6 1 27 972 a 28 1005 a OL -
EXP6 10 83 2987 a 34 1223 b OL -

100 25 914 a 26 937 b OL -

Chebyquad 6 1 6 221 a 6 221 a 14 484 a
10 34 1214 a 29 1033 b OL -

100 50 1785 a 53 1885 b OL -

20 1 14 3815 a 16 4064 a OL -
10 OF - - 95 24102 a OL -
100 OF - - 104 26385 a NC -

Watson 6 1 11 403 a 11 397 a 19 658 a

20 1 OF NC - - OL - -

32

Table A.2 -- Test Results for the Standard and Tensor Methods
on Singular (rank n-i) Problems

ucnTensor (p1) Tensor (p=l) StandardFunction XOfcns x. itns fcns x. is I fcns x.

Rosenbrock 2 1 31 305 a 31 305 a 70 570 a
10 39 383 a 39 383 a 93 764 a

100 60 601 a 58 579 a OL -

10 1 11 945 a 15 1181 b 15 1162 c
10 25 2049 a 27 2125 b 27 2071 c

100 29 2272 a 41 3224 b 66 5060 c

30 1 6 3202 a 6 3202 a 60 31598 b
10 12 6368 a 12 6367 b 23 12137 b

100 21 11647 a 21 11118 a 35 18453 b

Wood 4 1 25 519 a 25 519 a 37 708 a
10 34 713 a 36 758 a 52 100] a

100 77 1576 a 58 1200 a OL -

Helical 3 1 9 147 a 9 138 a 13 180 a
valley 10 15 229 a 15 222 a 25 334 a

100 20 319 a 16 243 a 26 345 a

Trigono- 2 1 6 59 a 6 59 a 12 102 a
metric 10 5 50 a 5 50 a 9 75 a

100 6 58 a 6 58 a 9 76 a

10 1 8 630 a 7 553 a 14 1085 a
10 14 1097 a 14 1098 a 15 1159 a
100 20 1639 a 18 1399 a NC -

Beale 2 1 6 64 a 7 74 a 6 52 a
10 10 100 a 10 100 a 47 396 b
100 64 679 a 23 231 a 44 364 a

Brown and 4 1 12 254 a 13 274 a 19 366 a
Dennis 10 16 337 a 14 293 a 24 461 a

100 20 421 a 21 443 a 40 778 a

Brown badly 2 1 OF - - OF - NC -
scaled 10 OL - OF - - NC -

100 OL - - OF - - NC -

Box three 3 1 9 136 a 18 270 b 9 121 c
dimensional 10 11 169 a 28 423 b 83 1083 c

100 28 430 a 25 380 a 31 412 b

33

Table A.2 (continued)

Penalty 1 4 1 4 84 a 4 84 a 15 290 a
10 4 84 a 4 84 a 20 385 a
100 7 147 a 7 147 a 26 499 a

10 1 4 318 a 4 318 a 18 1381 a
10 7 550 a 7 550 a 24 1838 a
100 17 1341 a 17 1341 a 35 2685 a

30 1 7 3722 a 10 5300 a 22 11605 a
10 17 9001 a 16 8471 a 29 15292 a
100 20 10584 a 18 9532 a 86 45334 a

Penalty II 4 1 6 130 a 4 88 a 57 1098 b
10 11 229 a 11 229 a 13 252 b
100 17 354 a 15 313 a OL -

Variably 4 1 4 91 a 4 87 a 17 328 a
dimensioned 10 9 192 a 11 229 a 19 336 a

100 17 359 a 18 372 a 25 480 a

10 1 11 1020 a 16 1254 a 24 1837 a
10 19 1479 a 17 1332 a 27 2066 a
100 20 1712 a 21 1641 a 40 3055 a

30 1 48 25382 a 23 12170 a 41 21599 a
10 OF - 36 19039 a OL -
100 OF - OF - - OL -

Biggs 6 1 83 2962 a OF - - OL -
EXP6 10 74 2694 a 63 2246 b OL -

100 OF - - OF - - OL -

Chebyquad 6 1 9 332 a 10 365 a 92 3135 b
10 22 789 a 19 683 b OL -
100 35 1245 a 22 785 b OL -

20 1 29 7349 a 8 2045 b OL -
10 26 7349 a OF - - OL -
100 50 13903 a 57 14441 a OL -

Watson 6 1 8 295 a 8 295 a 8 297 a

20 1 24 6099 a 28 7100 a OL

34

Table A.3 -- Test Results for the Standard and Tensor Methods
or Singular (rank n-2) Problems

Tensor (p __) Tensor (p=1) Standard
ires fcni X ims fcns ix. i irs I fcns x.

Rosenbrock 2 1 7 68 a 7 71 a 16 131 b
10 5 52 a 5 52 a 21 171 b
100 11 111 a 13 128 b 26 211 c

10 1 11 872 a 11 872 a 14 1084 b
10 33 2718 a 25 1959 b 29 2233 b
100 25 2007 a 29 2330 a 45 3473 a

30 1 11 5841 a 11 5841 a 21 11083 a
10 23 12172 a 25 1959 a OL -

100 OF - - 59 31247 a OL -

Wood 4 1 13 277 a 13 275 a 19 366 b
10 16 339 a 18 378 b 24 461 c

100 OF - OF - - NC -

Helical 3 1 15 222 13 196 a 41 541 a
valley 10 21 316 19 281 a 49 648 a

100 22 328 a 21 315 a 47 621 a

Trigono- 2 1 4 38 a 4 38 a 8 67 a
metric 10 6 62 a 6 62 a 10 83 a

100 7 70 a 7 70 a 8 67 a

10 1 6 553 a 7 554 a 15 1161 a
10 11 941 a 11 864 a 15 1159 a

100 NC - - NC - - NC -

Beale 2 1 6 65 a 6 65 a 10 84 b
10 10 101 a 9 95 b 10 84 c

100 22 235 a 20 217 a NC -

Brown and 4 1 12 253 a 13 271 a 18 347 a
Dennis 10 17 355 a 14 292 a 24 461 a

100 20 424 a 20 419 a 40 778 a

Brown badly 2 1 NC - NC - - NC -
scaled 10 NC - NC - - NC - -

100 NC - NC - - NC -

Box three 3 1 16 248 a 11 172 b 16 200 c
dimensional 10 22 331 a 13 202 a 22 304 b

100 48 763 a 40 633 b 46 637 b

35

Table A.3 (continued)

Penalty 1 4 1 3 64 a 3 64 a 15 290 a
10 4 84 a 4 84 a 20 385 a
100 7 147 a 7 147 a 26 499 a

10 1 4 318 a 4 318 a 18 1381 Ia
10 6 437 a 7 555 a 24 1838 a
100 19 1469 a 18 1418 a 35 2685 a

30 1 9 4776 a 8 4246 a 22 11605 a
10 17 9002 a 15 7944 a 29 15292 a
100 16 8473 a 18 9525 a 86 45334 a

Penalty I1 4 1 4 88 a 4 88 a 5 100 a
10 11 230 a 12 253 a 14 271 b

100 15 314 a 16 335 b 20 385 C

Variably 4 1 9 192 a 9 192 a 13 254 b
dimensioned 10 9 193 a 9 191 a 42 804 b

100 18 377 a 12 250 b OL

10 1 21 1663 a 11 868 b 50 3818 c
10 16 1217 a 14 1100 b 102 7769 c
100 24 1966 a 21 1666 b OL

30 1 28 15368 a 16 8476 b 39 20547 c
10 41 23269 a OL - OL -

100 30 16426 a OL - OL

Biggs 6 1 OF OF - OL -

EXP6 10 72 2627 a 54 1946 b OL
100 41 1491 a 52 1884 b OL

Chebyquad 6 1 13 473 a 11 404 b 96 3271 c
10 30 1076 a 26 926 a OL
100 37 1320 a 32 1141 a OL

20 1 12 3308 a 13 3310 a OL
10 OF - 42 10631 a OL
100 58 15705 a 46 11687 a OL

Watson 6 1 6 216 a 6 216 a 6 211 a

20 1 OF - - 33 8369 a OL

36

Table A.3 (continued)

Powell 4 1 9 194 a 11 233 a 15 290 a
singular 10 12 253 a 14 294 a 21 404 a

100 22 464 a 22 464 a 26 499 a

20 1 13 3308 a 10 2550 a 16 4043 a
10 11 3308 a 14 3559 a 21 5296 a
100 17 5075 1a IOF - - 27 6801 a

Unclassified

SECURITY CLASSIFICArION OF THIS PAGE

REPORT DOCUMENTATION PAGE
is. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified

2. SECURITy CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILAI'ITY OF REPORT

Approved for public release;
.ECLASSIFICATION/OOWNGRAOING SCHEDULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBERIS)

CU-CS-439-89

6. NAME OF PERFORMINQ ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

University of Colorado 1 U.S. Army Research Office

6C. AORESS (City, State and ZIP Cade) 7M. AODRESS (City. State and ZIP Code)

Campus Box B-19 Post Office Box 12211
Boulder, CO 80309 Research Triangle Park, NC 27709-2211

Be, NAME OF FUNOINGWSPONSORING ft OFFICE SYMBCL 9. PROCUREMENT INSTRUMENT IOENTIFICATION NUMBER
ORGANIZATION (it alpilib

DAAL 03-88-K-0086

O. ADORESS (City, State and ZIP Code) 10. SOURCE OF rUNOING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

1. TITL,.E Inctuae Slecuty C14aw(Icahlaot,

Tensor Methods for Unconstrained Optimization

12. PERSONAL AUTHOR(S) Using Second Derivatives
Robert B. Schnabel and Ta-Tung Chow

13a, TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. .Mfo.. Day) 75. PAGE COUNT

Technical FROM 5/15/89 To5/1 4 /90 89/07/25 40
16. SUPPLEMENTARY NOTATION

17 COSATI COOES 1I& SUBJECT TERMS XCon..nue on veerw it necctuy and idcnfify by biocr mum awrn

rIELD GROUP SUB. GR. Unconstrained optimization, tensor methods, fourth

order model

10. ABSTRACT (COn4mnuq On vere it (ncepAdry and iden tify by b&i4c umoop,

We introduce a new type of method for unconstrained optimization, which we call a tensor method. It is
related in its basic philosophy to the tensor methods for nonlinear equations of Schnabel and Frank, but beyond that
the methods have significant differences. The tensor method for unconstrained optimization bases each iteration
upon a fourih order model of the objective function. This model consists of the quadratic portion of the Taylor
series, plus low rank third and fourth order terms ltat cause the inodel to interpolate already calculated function and
gradient values from one or more previous iterates. We show that the costs of forming, storing, and solving the ten-
sor model are not significantly mort, than these costs for a standard method based upon a quadratic Taylor series
model. Test results are presented for sets of problems where the Hessian at the minimizer is rionsingular, and where
it is singular. On all the test sets, the tensor method solves considerably more problems than 4 comparable standard
method. On problems solved by both methods, the tensor method requires about half as many iterations, and half as
many function and derivative cvaluations as the standard method, on the average.

20. OISTRitBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIIED/UNLIMITED 3 SAME AS RPT. C OTIC USERS c Unclassified

22. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
IJcliudA fea Code)

Dr. Jagdish Chandra J619/549-0641
00 FORM 1473, 83 APR EOITION OF I JAN 73 S OBSOLETE. Unclassified

SECURITY CLASSIFICATION OF T041S PAGE

